8.3. Lesson: Análisis del Terreno

Ciertos tipos de ráster te permiten obtener una visión más clara del terreno que representan. Los Modelos de Digital de Elevaciones (MDEs) son particularmente útiles para ello. En esta lección utilizaras herramientas de análisis de terrenos para obtener más información sobre el área de estudio para la propuesta de desarrollo residencial anterior.

El objetivo de esta lección: Utilizar herramientas de análisis del terreno para obtener más información sobre el terreno.

8.3.1. basic Follow Along: Cálculo del Relieve Sombreado

We are going to use the same DEM layer as in the previous lesson. If you are starting this chapter from scratch use the Browser panel and load the raster/SRTM/srtm_41_19.tif.

The DEM layer shows you the elevation of the terrain, but it can sometimes seem a little abstract. It contains all the 3D information about the terrain that you need, but it doesn’t look like a 3D object. To get a better look at the terrain, it is possible to calculate a hillshade, which is a raster that maps the terrain using light and shadow to create a 3D-looking image.

We are going to use algorithms of Raster ‣ Raster terrain analysis menu.

  1. Click on the Hillshade menu

  2. The algorithm allows you to specify where the position of the light source: the Azimuth parameter has values from 0 (North) through 90 (East), 180 (South) and 270 (West) while the Vertical angle sets how high the light is. We will leave the default values:

    ../../../_images/hillshade_explanation.png
  3. Save the file in a new folder raster_analysis within the folder exercise_data with the name hillshade

  4. Finally click on Run

Ahora tendrás una capa nueva llamada relieve_sombreado que tiene este aspecto:

../../../_images/hillshade_raster.png

Se ve bien en 3D, pero ¿podemos mejorarla? En sí mismo, el sombreado del relieve parece un molde de yeso. ¿No podríamos utilizarlo con nuestros otros ráster más coloridos de alguna manera? Por supuesto que podemos, utilizando el sombreado del relieve como una capa sobrepuesta.

8.3.2. basic Follow Along: Utilizando un Sombreado del Relieve como Capa Sobrepuesta

Un sombreado del relieve puede proporcionar información muy útil sobre la luz solar en un momento dado del día. Pero también puede ser utilizado para fines estéticos, para que el mapa tenga mejor aspecto. La clave en este caso está en que el sombreado del relieve sea defina como mayormente transparente.

  1. Change the symbology of the original srtm_41_19 layer to use the Pseudocolor scheme as in the previous exercise

  2. Hide all the layers except the srtm_41_19 and hillshade layers

  3. Click and drag the srtm_41_19 to be beneath the hillshade layer in the Layers panel

  4. Set the hillshade layer to be transparent by clicking on the Transparency tab in the layer properties

  5. Set the Global opacity to 50%.

    You’ll get a result like this:

    ../../../_images/hillshade_pseudocolor.png
  6. Switch the hillshade layer off and back on in the Layers panel to see the difference it makes.

Utilizando el sombreado del relieve de esta forma, es posible enaltecer la topografía del paisaje. Si el efecto no parece ser suficiente para ti, puedes cambiar la transparencia de la capa relieve_sombreado, pero por supuesto, cuanto más brillante se vuelva el sombreado del relieve, peor se verán los colores bajo él. Necesitarás encontrar un balance que funcione.

Remember to save the project when you are done.

8.3.3. moderate Follow Along: Calculo de la Pendiente

Otra cosa útil a saber sobre el terreno es cómo de escarpado es. Si, por ejemplo, quieres construir casas en esas tierras, entonces necesitarás un terreno relativamente plano.

To do this, you need to use the Slope algorithm of the Processing ‣ Raster terrain analysis.

  1. Open the algorithm

  2. Choose srtm_41_19 as the Elevation layer

  3. Save the output as a file with the name slope in the same folder as the hillshade

  4. Click on Run

Now you’ll see the slope of the terrain, with black pixels being flat terrain and white pixels, steep terrain:

../../../_images/slope_raster.png

8.3.4. moderate Try Yourself Calculating the aspect

Aspect is the compass direction that the slope of the terrain faces. An aspect of 0 means that the slope is North-facing, 90 East-facing, 180 South-facing, and 270 West-facing.

Since this study is taking place in the Southern Hemisphere, properties should ideally be built on a north-facing slope so that they can remain in the sunlight.

Use the Aspect algorithm of the Processing ‣ Raster terrain analysis to get the layer.

Comprueba tus resultados

8.3.5. moderate Follow Along: Utilizando la Calculadora Ráster

Piensa en el problema del agente inmobiliario anterior, que se abordó en la lección Análisis Vectorial. Imagina que los compradores ahora quieren encontrar una construcción y construir una pequeña casa de campo en la propiedad. En el Hemisferio Sur, sabemos que una parcela con un desarrollo ideal debe estar orientada al norte, y con una pendiente de menos de cinco grados. Pero si la pendiente es menor a 2 grados, la orientación no importará.

Afortunadamente, ya tienes rásters mostrándote la pendiente además de la orientación, pero no tienes ninguna forma de saber dónde se dan ambas condiciones a la vez. ¿Cómo se podría realizar este análisis?

La respuesta está en la Calculadora ráster.

QGIS has different raster calculators available:

  • Raster ‣ Raster Calculator

  • Processing ‣ Raster Analysis ‣ Raster calculator

  • Processing ‣ GDAL ‣ Raster miscellaneous ‣ Raster calculator

  • SAGA ‣ Raster calculus ‣ Raster calculator

Each tool is leading to the same results, but the syntax may be slightly different and the availability of operators may vary.

We will use Processing ‣ Raster Analysis ‣ Raster calculator.

  1. Open the tool by double clicking on it.

    • The upper left part of the dialog lists all the raster layers loaded in the legend as name@N where name is the name of the layer and N is the raster band used.

    • In the upper right part you will see a lot of different operators: stop for a moment to think that a raster is an image, you should see it as a 2D matrix filled with numbers.

  2. North is at 0 (zero) degrees, so for the terrain to face north, its aspect needs to be greater than 270 degrees and less than 90 degrees. Therefore the formula is:

    aspect@1 <= 90 OR aspect@1 >= 270
    
  3. You have now to set up the raster details, like the cell size, extent and CRS. This can be done manually by filling or it can be automatically set by choosing a Reference layer. Choose this last option by clicking on the button next to the Reference layer(s) parameter.

  4. In the dialog, choose the aspect layer because we want to obtain a layer with the same resolution.

  5. Save the layer as aspect_north.

    The dialog should look like:

    ../../../_images/raster_calculator.png
  6. Finally click on Run.

Tu resultado será este:

../../../_images/aspect_result.png

The output values are 0 or 1. What does it mean? The formula we wrote contains the conditional operator OR: therefore the final result will be False (0) and True (1).

8.3.6. moderate Try Yourself More slopes

Ahora que has hecho la orientación, crea dos nuevos análisis de la capa MDE.

  • The first will be to identify all areas where the slope is less than or equal to 2 degrees.

  • The second is similar, but the slope should be less than or equal to 5 degrees.

  • Save them under exercise_data/raster_analysis as slope_lte2.tif and slope_lte5.tif.

Comprueba tus resultados

8.3.7. moderate Follow Along: Combinando Resultados de Análisis Ráster

Ahora tienes tres nuevos análisis ráster de la capa MDE

  • orientacion_norte: el terreno orientado al norte

  • pendiente_lte2: la pendiente igual o menor a 2 grados

  • pendiente_lte5: la pendiente igual o menor a 5 grados

Where the conditions of these layers are met, they are equal to 1. Elsewhere, they are equal to 0. Therefore, if you multiply one of these rasters by another one, you will get the areas where both of them are equal to 1.

Las condiciones a cumplir son; a pendientes iguales o menores de 5 grados, el terreno debe estar orientado al norte; pero a pendientes iguales o menores de 2 grados, la dirección a la que se orienta el terreno no importa.

Therefore, you need to find areas where the slope is at or below 5 degrees AND the terrain is facing north, OR the slope is at or below 2 degrees. Such terrain would be suitable for development.

Para calcular las áreas que cumplen esos criterios:

  1. Open your Raster calculator again

  2. Use the Layer panel, the Operators buttons, and your keyboard to build this expression in the Expressions text area:

    ( aspect_north@1 = 1 AND slope_lte5@1 = 1 ) OR slope_lte2@1 = 1
    
  3. Set the Reference layer(s) parameter as the aspect_north (it does not matter if you choose another one given that all the layers have been calculated from srtm_41_19)

  4. Save the output under exercise_data/raster_analysis/ as all_conditions.tif

  5. Click Run

Your results:

../../../_images/development_analysis_results.png

8.3.8. moderate Follow Along: Simplificando el Ráster

Como puedes ver en la imagen superior, los análisis combinados nos dejan con muchas áreas pequeñas donde se cumplen las condiciones. Pero esas no son realmente útiles para nuestro análisis, ya que son demasiado pequeñas para construir. Vamos a deshacernos de todas esas áreas minúsculas.

  1. Open the Sieve tool Processing ‣ GDAL ‣ Raster Analysis

  2. Set the Input file to all_conditions, and the Sieved to all_conditions_sieve.tif (under exercise_data/raster_analysis/).

  3. Set both the Threshold to 8 and check Use 8-connectedness.

    ../../../_images/raster_seive_dialog.png

    Once processing is done, the new layer will load into the canvas.

    ../../../_images/seive_result_incorrect.png

    ¿Qué está pasando? La respuesta se encuentra en los metadatos del nuevo archivo ráster.

  4. View the metadata under the Information tab of the Layer Properties dialog. Look the STATISTICS_MINIMUM value:

    ../../../_images/seive_metadata.png

    Whereas this raster, like the one it’s derived from, should only feature the values 1 and 0 while it has also a very large negative number. Investigation of the data shows that this number acts as a null value. Since we’re only after areas that weren’t filtered out, let’s set these null values to zero.

  5. Open the Raster Calculator again, and build this expression:

    (all_conditions_sieve@1 <= 0) = 0
    

    This will maintain all existing zero values, while also setting the negative numbers to zero; which will leave all the areas with value 1 intact.

  6. Save the output under exercise_data/raster_analysis/ as all_conditions_simple.tif.

Tu resultado tiene este aspecto:

../../../_images/raster_seive_correct.png

Eso era lo que se esperaba: una versión simplificada de los resultados anteriores. Recuerda que si los resultados que obtienes de una herramienta no son los que esperabas, comprobando los metadatos (y atributos vectoriales, si es aplicable) puede ser esencial para solucionar el problema.

8.3.9. moderate Follow Along: Reclassifying the Raster

We use the Raster calculator tool to make some calculation on raster layer. There is another powerful tool that we can use to better extract information from existing layers.

Back to the aspect layer: we know now that it has numeric values within a range from 0 through 360. What we want to do is to reclassify this layer with other discrete values (from 1 to 4) depending on the aspect:

  • 1 = North (from 0 to 45 and from 315 to 360);

  • 2 = East (from 45 to 135)

  • 3 = South (from 135 to 225)

  • 4 = West (from 225 to 315)

This operation could be achieved with the raster calculator but the formula would become very very large.

The alternative tool is the Reclassify by table tool within Processing ‣ Raster analysis.

  1. Open the tool

  2. Choose aspect as the Input raster layer

  3. Click on the of the Reclassification table parameter. A table like dialog will pop up where you can choose the minimum, maximum and new values for each class.

  4. Click on the Add row button and add 5 rows. Fill each row as the following picture and click OK:

    ../../../_images/reclassify_table.png

    The method used by the algorithm to treat the threshold values of each class is defined by the Range boundaries parameter.

  5. Save the layer as reclassified in the exercise_data/raster_analysis/ folder

    ../../../_images/reclassify_setup.png
  6. Click on Run

If you compare the native aspect layer with the reclassified one, there are not big differences. But giving a look at the legend you can see that the values go from 1 to 4.

Let’s give this layer a better style.

  1. Open the Layer Styling panel

  2. Choose Paletted/Unique values instead of Singleband gray

  3. Click on the Classify button to automatically fetch the values and assign them random colors:

    ../../../_images/unique_style.png

The output should look like this (you can have different colors given that they have been randomly generated):

../../../_images/reclassify_result.png

With this reclassification and the paletted style applied to the layer you can immediately see the aspect areas. Cool isn’t it?!

8.3.10. basic Follow Along: Querying the raster

Unlike vectors, raster layers don’t have an attribute table: each pixel contains one or more numerical values, depending if the raster is singleband or multiband.

All the raster layers we used in this exercise are made by just a single band: depending on the layer, pixel numbers will represent elevation, aspect or slope values.

How can we query the raster layer to know the value of a single pixel? We can use the identify button to extract this information.

  1. Select the tool from the upper toolbar

  2. Click on a random location of the srtm_41_19 layer. The Identify Results will appear with the value of the band at the clicked location:

    ../../../_images/identify_raster.png
  3. You can change the output of the Identify Results panel from the current tree mode to a table one by selecting Table in the View menu at the bottom of the panel:

    ../../../_images/identify_raster_table.png

Clicking each pixel to get the value of the raster could become annoying after a while. We can use the Value Tool plugin to solve this problem.

  1. Go to Plugins ‣ Manage/Install Plugins…

  2. In the All tab, type Value Tool in the search box

  3. Select the Value Tool plugin, press Install Plugin and then Close the dialog.

    ../../../_images/value_tool.png

    The new Value Tool panel will appear.

    Truco

    If you close the panel you can reopen it by enabling it in the View ‣ Panels ‣ Value Tool or by clicking on the new icon of the toolbar.

  4. To use the plugin just check the Enable checkbox and be sure that the srtm_41_19 layer is active (checked) in the Layers panel.

  5. Move the cursor on the map to immediately know the value of the pixel

    ../../../_images/value_tool_query.png
  6. But there is more. The Value Tool plugin allows to query all the active raster layers in the Layers panel. Set the aspect and slope layers active again and hover the mouse on the map:

    ../../../_images/value_tool_query_multi.png

8.3.11. In Conclusion

You’ve seen how to derive all kinds of analysis products from a DEM. These include hillshade, slope and aspect calculations. You’ve also seen how to use the raster calculator to further analyze and combine these results. Finally you learned how to reclassify a layer and how to query the results.

8.3.12. What’s Next?

Ahora tienes dos análisis: el análisis vectorial que te muestra las parcelas potencialmente adecuadas, y el análisis ráster que te muestra el terreno potencialmente adecuado. ¿Cómo se pueden combinar para llegar a un resultado final para este problema? Ese es el tema de la siguiente lección, empezando en el módulo siguiente.