53 QgsBox3D(
double xmin = std::numeric_limits<double>::quiet_NaN(),
double ymin = std::numeric_limits<double>::quiet_NaN(),
double zmin = std::numeric_limits<double>::quiet_NaN(),
54 double xmax = std::numeric_limits<double>::quiet_NaN(),
double ymax = std::numeric_limits<double>::quiet_NaN(),
double zmax = std::numeric_limits<double>::quiet_NaN(),
55 bool normalize =
true );
77 double zMin = std::numeric_limits<double>::quiet_NaN(),
double zMax = std::numeric_limits<double>::quiet_NaN(),
78 bool normalize =
true );
81 QgsBox3D( SIP_PYOBJECT x
SIP_TYPEHINT( Optional[Union[
QgsPoint,
QgsVector3D,
QgsRectangle,
float]] ) = Py_None, SIP_PYOBJECT y
SIP_TYPEHINT( Optional[
QgsPoint,
QgsVector3D,
float] ) = Py_None, SIP_PYOBJECT z
SIP_TYPEHINT( Optional[Union[
bool,
float]] ) = Py_None, SIP_PYOBJECT x2
SIP_TYPEHINT( Optional[Union[
bool,
float]] ) = Py_None, SIP_PYOBJECT y2
SIP_TYPEHINT( Optional[
float] ) = Py_None, SIP_PYOBJECT z2
SIP_TYPEHINT( Optional[
float] ) = Py_None, SIP_PYOBJECT n
SIP_TYPEHINT( Optional[
bool] ) = Py_None ) [(
double x = 0.0,
double y = 0.0,
double z = 0.0,
double x2 = 0.0,
double y2 = 0.0,
double z2 = 0.0,
bool n = true )];
83 if ( sipCanConvertToType( a0, sipType_QgsRectangle, SIP_NOT_NONE ) && a4 == Py_None && a5 == Py_None && a6 == Py_None )
88 QgsRectangle *p =
reinterpret_cast<QgsRectangle *
>( sipConvertToType( a0, sipType_QgsRectangle, 0, SIP_NOT_NONE, &state, &sipIsErr ) );
91 double z1 = a1 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a1 );
92 double z2 = a2 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a2 );
93 bool n = a3 == Py_None ? true : PyObject_IsTrue( a3 );
95 sipCpp =
new QgsBox3D( *p, z1, z2, n );
97 sipReleaseType( p, sipType_QgsRectangle, state );
99 else if ( sipCanConvertToType( a0, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a1, sipType_QgsPoint, SIP_NOT_NONE ) && a3 == Py_None && a4 == Py_None && a5 == Py_None && a6 == Py_None )
104 QgsPoint *pt1 =
reinterpret_cast<QgsPoint *
>( sipConvertToType( a0, sipType_QgsPoint, 0, SIP_NOT_NONE, &state, &sipIsErr ) );
107 QgsPoint *pt2 =
reinterpret_cast<QgsPoint *
>( sipConvertToType( a1, sipType_QgsPoint, 0, SIP_NOT_NONE, &state, &sipIsErr ) );
110 bool n = a2 == Py_None ? true : PyObject_IsTrue( a2 );
111 sipCpp =
new QgsBox3D( *pt1, *pt2, n );
113 sipReleaseType( pt2, sipType_QgsPoint, state );
115 sipReleaseType( pt1, sipType_QgsPoint, state );
117 else if ( sipCanConvertToType( a0, sipType_QgsVector3D, SIP_NOT_NONE ) && sipCanConvertToType( a1, sipType_QgsVector3D, SIP_NOT_NONE ) && a3 == Py_None && a4 == Py_None && a5 == Py_None && a6 == Py_None )
122 QgsVector3D *corner1 =
reinterpret_cast<QgsVector3D *
>( sipConvertToType( a0, sipType_QgsVector3D, 0, SIP_NOT_NONE, &state, &sipIsErr ) );
125 QgsVector3D *corner2 =
reinterpret_cast<QgsVector3D *
>( sipConvertToType( a1, sipType_QgsVector3D, 0, SIP_NOT_NONE, &state, &sipIsErr ) );
128 bool n = a2 == Py_None ? true : PyObject_IsTrue( a2 );
129 sipCpp =
new QgsBox3D( *corner1, *corner2, n );
131 sipReleaseType( corner2, sipType_QgsVector3D, state );
133 sipReleaseType( corner1, sipType_QgsVector3D, state );
136 ( a0 == Py_None || PyFloat_AsDouble( a0 ) != -1.0 || !PyErr_Occurred() ) &&
137 ( a1 == Py_None || PyFloat_AsDouble( a1 ) != -1.0 || !PyErr_Occurred() ) &&
138 ( a2 == Py_None || PyFloat_AsDouble( a2 ) != -1.0 || !PyErr_Occurred() ) &&
139 ( a3 == Py_None || PyFloat_AsDouble( a3 ) != -1.0 || !PyErr_Occurred() ) &&
140 ( a4 == Py_None || PyFloat_AsDouble( a3 ) != -1.0 || !PyErr_Occurred() ) &&
141 ( a5 == Py_None || PyFloat_AsDouble( a3 ) != -1.0 || !PyErr_Occurred() ) &&
142 ( a6 == Py_None || PyFloat_AsDouble( a3 ) != -1.0 || !PyErr_Occurred() ) )
144 double x1 = a0 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a0 );
145 double y1 = a1 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a1 );
146 double z1 = a2 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a2 );
147 double x2 = a3 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a3 );
148 double y2 = a4 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a4 );
149 double z2 = a5 == Py_None ? std::numeric_limits<double>::quiet_NaN() : PyFloat_AsDouble( a5 );
150 bool n = a6 == Py_None ? true : PyObject_IsTrue( a6 );
151 sipCpp =
new QgsBox3D( x1, y1, z1, x2, y2, z2, n );
155 PyErr_SetString( PyExc_TypeError, QStringLiteral(
"Invalid type in constructor arguments." ).toUtf8().constData() );
166 void set(
double xMin,
double yMin,
double zMin,
double xMax,
double yMax,
double zMax,
bool normalize =
true )
168 mBounds2d.set( xMin, yMin, xMax, yMax,
false );
360 bool contains(
double x,
double y,
double z ) const
SIP_HOLDGIL;
374 void combineWith(
double x,
double y,
double z )
SIP_HOLDGIL;
414 void scale(
double scaleFactor,
double centerX,
double centerY,
double centerZ )
SIP_HOLDGIL;
420 void grow(
double delta );
483 SIP_PYOBJECT __repr__();
485 QString str = QStringLiteral(
"<QgsBox3D(%1, %2, %3, %4, %5, %6)>" )
486 .arg( sipCpp->xMinimum() )
487 .arg( sipCpp->yMinimum() )
488 .arg( sipCpp->zMinimum() )
489 .arg( sipCpp->xMaximum() )
490 .arg( sipCpp->yMaximum() )
491 .arg( sipCpp->zMaximum() );
492 sipRes = PyUnicode_FromString( str.toUtf8().constData() );
499 double mZmin = std::numeric_limits<double>::quiet_NaN();
500 double mZmax = std::numeric_limits<double>::quiet_NaN();