24QString QgsRandomExtractAlgorithm::name()
 const 
   26  return QStringLiteral( 
"randomextract" );
 
   29QString QgsRandomExtractAlgorithm::displayName()
 const 
   31  return QObject::tr( 
"Random extract" );
 
   34QStringList QgsRandomExtractAlgorithm::tags()
 const 
   36  return QObject::tr( 
"extract,filter,random,number,percentage" ).split( 
',' );
 
   39QString QgsRandomExtractAlgorithm::group()
 const 
   41  return QObject::tr( 
"Vector selection" );
 
   44QString QgsRandomExtractAlgorithm::groupId()
 const 
   46  return QStringLiteral( 
"vectorselection" );
 
   49QString QgsRandomExtractAlgorithm::shortDescription()
 const 
   51  return QObject::tr( 
"Generates a vector layer that contains only a random subset of the features in an input layer." );
 
   54QString QgsRandomExtractAlgorithm::shortHelpString()
 const 
   56  return QObject::tr( 
"This algorithm takes a vector layer and generates a new one that contains only a subset " 
   57                      "of the features in the input layer.\n\n" 
   58                      "The subset is defined randomly, using a percentage or count value to define the total number " 
   59                      "of features in the subset." );
 
   67QgsRandomExtractAlgorithm *QgsRandomExtractAlgorithm::createInstance()
 const 
   69  return new QgsRandomExtractAlgorithm();
 
   72void QgsRandomExtractAlgorithm::initAlgorithm( 
const QVariantMap & )
 
   75  addParameter( 
new QgsProcessingParameterEnum( QStringLiteral( 
"METHOD" ), QObject::tr( 
"Method" ), QStringList() << QObject::tr( 
"Number of features" ) << QObject::tr( 
"Percentage of features" ), 
false, 0 ) );
 
   83  std::unique_ptr<QgsProcessingFeatureSource> source( parameterAsSource( parameters, QStringLiteral( 
"INPUT" ), context ) );
 
   88  std::unique_ptr<QgsFeatureSink> sink( parameterAsSink( parameters, QStringLiteral( 
"OUTPUT" ), context, dest, source->fields(), source->wkbType(), source->sourceCrs(), 
QgsFeatureSink::RegeneratePrimaryKey ) );
 
   92  const int method = parameterAsEnum( parameters, QStringLiteral( 
"METHOD" ), context );
 
   93  int number = parameterAsInt( parameters, QStringLiteral( 
"NUMBER" ), context );
 
   94  const long count = source->featureCount();
 
  100      throw QgsProcessingException( QObject::tr( 
"Selected number is greater than feature count. Choose a lower value and try again." ) );
 
  106      throw QgsProcessingException( QObject::tr( 
"Percentage can't be greater than 100. Choose a lower value and try again." ) );
 
  108    number = 
static_cast<int>( std::ceil( number * count / 100 ) );
 
  115  std::vector<QgsFeatureId> allFeats;
 
  116  allFeats.reserve( count );
 
  118  feedback->
pushInfo( QObject::tr( 
"Building list of all features..." ) );
 
  122      return QVariantMap();
 
  123    allFeats.push_back( f.
id() );
 
  125  feedback->
pushInfo( QObject::tr( 
"Done." ) );
 
  128  std::random_device randomDevice;
 
  129  std::mt19937 mersenneTwister( randomDevice() );
 
  130  std::uniform_int_distribution<size_t> fidsDistribution;
 
  134  size_t actualFeatureCount = allFeats.size();
 
  135  size_t shuffledFeatureCount = number;
 
  136  bool invertSelection = 
static_cast<size_t>( number ) > actualFeatureCount / 2;
 
  137  if ( invertSelection )
 
  138    shuffledFeatureCount = actualFeatureCount - number;
 
  140  size_t nb = actualFeatureCount;
 
  143  feedback->
pushInfo( QObject::tr( 
"Randomly select %1 features" ).arg( number ) );
 
  144  auto cursor = allFeats.begin();
 
  145  using difference_type = std::vector<QgsFeatureId>::difference_type;
 
  146  while ( shuffledFeatureCount-- )
 
  149      return QVariantMap();
 
  152    fidsDistribution.param( std::uniform_int_distribution<size_t>::param_type( 0, nb - 1 ) );
 
  154    std::swap( *cursor, *( cursor + 
static_cast<difference_type
>( fidsDistribution( mersenneTwister ) ) ) );
 
  164  if ( invertSelection )
 
  165    for ( 
auto it = cursor; it != allFeats.end(); ++it )
 
  166      selected.insert( *it );
 
  168    for ( 
auto it = allFeats.begin(); it != cursor; ++it )
 
  169      selected.insert( *it );
 
  171  feedback->
pushInfo( QObject::tr( 
"Adding selected features" ) );
 
  176      return QVariantMap();
 
  185  outputs.insert( QStringLiteral( 
"OUTPUT" ), dest );
 
@ Vector
Tables (i.e. vector layers with or without geometry). When used for a sink this indicates the sink ha...
 
@ NoGeometry
Geometry is not required. It may still be returned if e.g. required for a filter condition.
 
@ RegeneratesPrimaryKey
Algorithm always drops any existing primary keys or FID values and regenerates them in outputs.
 
QFlags< ProcessingAlgorithmDocumentationFlag > ProcessingAlgorithmDocumentationFlags
Flags describing algorithm behavior for documentation purposes.
 
@ SkipGeometryValidityChecks
Invalid geometry checks should always be skipped. This flag can be useful for algorithms which always...
 
Wrapper for iterator of features from vector data provider or vector layer.
 
bool nextFeature(QgsFeature &f)
Fetch next feature and stores in f, returns true on success.
 
Wraps a request for features to a vector layer (or directly its vector data provider).
 
QgsFeatureRequest & setFlags(Qgis::FeatureRequestFlags flags)
Sets flags that affect how features will be fetched.
 
QgsFeatureRequest & setFilterFids(const QgsFeatureIds &fids)
Sets the feature IDs that should be fetched.
 
QgsFeatureRequest & setNoAttributes()
Set that no attributes will be fetched.
 
@ FastInsert
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
 
@ RegeneratePrimaryKey
This flag indicates, that a primary key field cannot be guaranteed to be unique and the sink should i...
 
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
 
bool isCanceled() const
Tells whether the operation has been canceled already.
 
Contains information about the context in which a processing algorithm is executed.
 
Custom exception class for processing related exceptions.
 
Base class for providing feedback from a processing algorithm.
 
virtual void pushInfo(const QString &info)
Pushes a general informational message from the algorithm.
 
An enum based parameter for processing algorithms, allowing for selection from predefined values.
 
A feature sink output for processing algorithms.
 
An input feature source (such as vector layers) parameter for processing algorithms.
 
A numeric parameter for processing algorithms.
 
QSet< QgsFeatureId > QgsFeatureIds